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A convenient and useful method for showing weak convergence, to a

Y el e e

diffusion, of the interpolated solutions of a (not necessarily

Markovian) sequence of stochastic difference equations is devéloped.

The technique involves the use of averaging methods to show that the

weak limit satisfies the martingale problem of Strook and Varadhan which
1 is associated with the diffusion. A truncation method is developed so

that it is only necessary to work with the parts of the process before

first escape from an arbitrary but bounded domain. The assumptions

1 ! cover a wide variety of applications in systems theory, mathematical biology and

4 1 elsewhere but the method of proof is adaptable to other special cases where our

| _ particular assumptions might not hold. Two applications are given in order to
illustrate the relative ease of use of the method. The driving noise
process in the difference equations can depend on the solution
process of the difference equation, and one application where this

is useful is given (a rate of convergence problem for simple

i stochastic approximations with sequentially averaged observations). —
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_Avajlability Codes | 1. Introduction

Availand/or
Dist. specjal

f? . The paper develops a general method for proving weak convergence
to a diffusion process of the sequence of appropriately scaled and

interpolated solutions to the (not necessarily Markovian) equation

Yy AT 4 1

€

. oz

S XS+ e (EED) + TE B OEED) * o(e), X € R,
Xg given.

The {Ei} are a sequence of random variables whose distributions
might depend on the {X;}. The method is convenient to use and has
wide applicability. In order to illustrate the use of the method,
applications to the rate of convergence for a general form of
stochastic approximation and to a problem of Guess and Gillespie [1]
are treated. For the latter problem, the treatment in [1] required
an explicit construction of the solution - essentially limiting the
treatment to the scalar case. There is no such restriction here.

Define X°(*) by X°(t) = X: on [ne,ne+€). The basic idea
is to prove that {Xe(')} converges weakly to the solution of the
martingale problem [2] connected with the diffusion process. In recent years
many nice results for dealing with weak convergence of a sequence

of non-Markov continuous parameter processes to a Markov process

have been developed [3]-[5], but the discrete parameter case is not

in such good shape.

The basic backgrewnd theorems are in [6] where some ''continuous parameter'
applications are given. That reference emphasizes the continuous
parameter case. But the method is often easier to use and can

handle many types of interesting problems in the discrete parameter
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case, and here we show how to effectively use it for a broad class of
problems. The method of proof is interesting in itself and can be
adapted to special cases when our assumptions do not hold. For each

€ >0, let Jﬁz be an increasing sequence of o-algebras which measures
{ Xe(s) » S <t} and E: the corresponding conditional expectation operator.
Write B:e = Es. Let jEF denote the measurable functions f£f(-) (of

5 €
(w,t)) which are constant on the [ne,n€+€) intervals and :;
t

measurable at time t, and satisfy sup E|f(t)| <=. Let fs(.) €
>
-

Ic.

If sup Blfe(t)l <= and 1lim E|£f°(t)| = 0, for each t, we say
T e €+0

€50
(following the terminology in [3], [6]) that p-1lim £°(-) = 0. Define
e+0
R®* on &by

A£(t) = [E:f(t+€) - £(t)]/¢.

A® is an approximation “in some sense" of the weak infinitesimal operator of the
limit process; |

Reference [3] contains a very interesting method for the
continuous parameter case, with some remarks on how it might be used
for the discrete parameter case. The method here seems easier to use
and it is easier to construct the perturbation {fe(~)} with out method.
Some of our results were strongly motivated by the techniques in [3).

Section 2 contains some assumptions on the limit process, and

a sequence of truncated processes is introduced in Section 3.

The use of these truncated processes will facilitate the tightness proof,

and &« lows us to work only with xe(-) and the limit until the first

escape time from an abritrary but bounded region. The general
background limit theorem and the tightness theorem from [6] are stated

in Section 4 in the form which will be most useful to us. In Section 5,

d
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specific assumptions for {1.1) are given when {E:} does not depend

on {x;}, and the theorems of Section 4 are applied to (1.1) in

P—— _\'M""

Section 6. Sections 7 and 8 illustrate the general method with two
applications. The modifications when {E:} is {X:} dependent are i,‘

discussed in Section 9, and an application to the rate of convergence

p———

problem for a stochastic approximation with "averaged' observations

appears in Section 10. From a notational point of view, it is much simpler to 1
treat the case of non-state-dependent noise first. .

2. Assumptions on the Limit Process

! : 1 i
Some assumptions on (what will be) the limit process is required. °
A

Let X denote the real valued functions on R+ x RY which are
A

A
zero at o, .I% the subset with compact support, and 3::’3 the

subset whose mixed partial (t,x) derivatives up to orders (&,B) !

; 5 & 511
are continuous. Let A E bi(x’t)5§; + 3

b g

9
.z.aij (xot)a_—s_‘x. X. denote
1,)] L=y

a diffusion operator with continuous coefficients.

P

Next, an existence and uniqueness condition is needed. Dr[o,w)
denotes the usual space [7] of RT valued functions which have left
hand limits and are right continuous and with the Skorokhod topology.

Let x(*) denote the generic element of Dr[O,w). For each x € Rr,

T ST RIS T P AR

we assume that there is measure Px on Dr[O,w) such that

Px{x(O) = x} =1 and 3

(2.1) P_{sup|x(t)| <=} =1, each T < =,
= t<T

and which is the unique solution to the martingale problem of Strook

A
and Varadhan; namely, for each f(-,*) € 333’2 and x € Rr, the

Mf(-) below is a Px martingale:
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(2.2) Mc(t) = £(x(t),t) - £(x(0),0) - [ (& + A)£(x(s),s)ds.
f 0 9S

We work on Dr[O,w) rather than on Cr[0,w) because it is easier

to prove tightness on the former space. The measure P is con-

centrated on the subset of Dr[o,ﬁ) of continuous functions, in any

case. When the measure is given, the corresponding process solution

to the martingale problem will be written as X(:) in order to

distinguish it from the generic element x(°). We still have existence
and uniqueness if the initial value x 1is replaced by a random variable

X(0). Below X(0) will be the weak limit of {xg}.

3. Truncated Processes

The idea of the proof in [6] is to first prove tightness and
then to show that all weak limits solve the same martingale problem

whose process solution X(°*) is unique (in the sense of measure, of

- course). To facilitate the proof of tightness, it is convenient to

bound the random functions Xe(-) and X(-) by altering them after
they first leave the sphere SN = {x: |x| < N} and stopping them

after first exit from SN+1' It is then proved that for each N the
sequence of Xe(-) before first exit from Sy converges weakly to the

part of the diffusion ' X(+) before first exit from Sy. Finally, the
uniqueness and (2.1) (i.e., infinite escape time for the diffusion) is
used to get that the unaltered Xe(-) converge weakly to X(*) as
desired. Let qN(-) denote a continuous function which takes the value

unity on SN' zero on RY - has values in [0,1] and first and second

SNe1’
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derivatives uniformly bounded in x,N. It is convenient to write

(1.1) in the slightly expanded form

(3.1) Xy = X[+ eR00) « /g (CED * heXEED) + o(e)ky (D),

where conditions on the functions will be given below.

Let the subscript N denote multiplication by qN('); i.e.,

h, e Fe(°)qN(-), etc. For each N, we define the truncated or
i ’

altered process x;'N by
N ’ ’ ’
(3.2 X = X5+ e OGN + 2e 0% )

~

+ehe yOENED) + o(ek, NS ED),.

The sequence {X:’N} equals {X;} until at least the first

time that the latter exits from SN.

N

Let A" denote a diffusion operator of the form of A in

Section 3 and whose coefficients aN(-,-) and bN(-,°) are continuous

to :
a(,*) and b(-,-), resp., in SN. Suppose that a process

and equal /
XN(-) solves (not necessarily uniquely) the martingale problem
corresponding to operator AN and (perhaps random) initial condition
XN(O). 1f XN(O) + X(0) weakly, then we call XN(o) an
N-truncation of X(:), the unique solution of the martingale problem
for initial condition X(0) and with operator A. The terms
RS’N,Q:’N,E:’N,E:’N and 2"“ are defined analogously to Re,

etc., but for the process x"N(») instead of the process xe(-),

where X*'N() is the piecewise constant (on the [n€,ne+€) intervals) interpolation ;

= xe’N(ne).

of {X:’N}; in particular x:’N

boaamatid i ad ol
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4., The Limit Theorems

Theorems 1 and 2 are taken from [6], but are rephrased for the

convenience of the class of problems dealt with here. In the follow-

ing sections, they will be applied to (1.1) and (3.1).

In Theorems 1 and 2, {x:, n > 0} is an arbitrary sequence

for each € > 0, with interpolation denoted by xe(-) (xe(t) =
€

Xn on [ne,ne+e)). It need not be defined by (1.1) or (3.1). The
{X:’N} is any sequence such that x:’N = X, until at least the
first exit time of {XS} from SN' Part of our basic structure (e.g.,

use of A and the perturbed fe’N(~) below) is motivated by that of
Kurtz [3]. The proofs are much different and do not require the
semigroup machinery of [3) and its predecessors. An extensive
development of a martingale approach to limit theorems for a class of

continuous parameter Markov processes appears in [12].

Iheorem 1. Assume the conditions of Sections 2 and 3 on the.

martingale problem with operator A, and on aN(-,°) and bN(-,-).
Let X

S5 xo weakly as € + 0, For each N and f(-,-) € iaﬁ a _dense

0
set in 0’ let there be a sequence {fe’N(-)}, where fe'N(-) €
ie'N and such that
(4.1) p-lim (£5°N¢y) - £x®N(y, 91 = 0
€+0
(4.2 p-im %NS NC) - (G« AhE® N, 00 = 0.
-

B e . |



Then, if {x*'N(.), e> 0} is tight in

Dr[O,w) for each N,Xe(-) converges weakly to X(-), the unique
solution to the martingale problem with initial condition X(0) = X

0.

Let Co denote the space of real valued continuous functions

on Rr, with compact support.

()
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Theorem 2. For each T < and N < » suppose that

(4.3) lim Iim P{suplx ’ (t)l > K} =0,
K+= €>0 t<

For each N and each f(-) € IXf a dense set in é et fe’N(.)

be a sequence in ;EF’N

such that (4.4)-(4.6) hold.

(4.4) o vimPlsupl£Nee) - £(x%N(t))) > «} = 0, each a > 0, T<o,

€+0 t<T

For each T < =, let there be a random variable M;’N(f) > 0 such
that

(4.5) lim sup P{MS’ Negy > k3 = 0,
K+ €50

where
(4.6) :uplAe’"fe’“(t)l < Mo Neh).

Then (£(Xx*'"(-))}, each £(-) € &, and (x**N(-)} are tight in
DT [0,=).

The usefulness and relative ease of application of Theorems 1

and 2 will become apparent in the following sections.

sk ey
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5. Assumptions for (3.1)

~

Two forms will be dealt with. The first allows h etc. to

e’

have a rather arbitrary dependence on §, but uses

(Ala) For each ¢, € is stationary, bounded, ¢-mixing

n
(see [7]) uniformly in €, with mixing rate satisfying 20%/2
i

< o,

In many applications, it is desired to have {Ez} unbounded (say

Gaussian). Under additional restrictions on he’ge’ke’ this can

be treated for particular cases of {gﬁ}, We also treat the case, quit.
important  in practice, where (Alb) holds in lieu of (Ala).

(Alb) Let the functions in (3.1) take the forms g_(x,§) =

ge(x)6, ﬁe(x,ﬁ) = ho(x)é, and for some & > 0, c > 0, k.(x,8) =
1+Q
€ .

ke(x)O(lilc + 1) and the o(e) coefficient of k

Let there be a matrix L and a vector valued stationary Markov

process {Eh} such that EEh 0, all moments are finite and

- 5
€, = L& . Let ({R/} be such that R, > |E€£E;+J,IE[E£IEO]I < Ry |&ql

and } IR,LII/2 < w, Suppose that there are {pz} such that
L

i pp/2 <= and
(5.1) |EGE;1Eg) - EGED] < o, (1 + |51,

For each @ > 0, there is a B8 > 0 such that E(IEIIGIEO) <
(constant)(lfolB +1).

Remarks on (Ala,b) follow (AS8).
When Case (Alb) holds, the ke(x,E), etc., is to be replaced by
ke(x), etc., in (A2) and (AS) below.
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(A2) ke(+,+) 1is measurable, and uniformly bounded on bounded

X-sets. ﬁe(',-Lge(-,-) and E€(~) are measurable and continuous

in x for each §. They are bounded on bounded x-sets uniformly

in ¢€,§.

(A3) There is a continuous h(*) such that h () » h(*)

uniformly on bounded x-sets.

$ (A4) sﬁe(x,;:) 0, each n,e,x.

| & (AS) gg(-,€) and h.(-,58) are (twice, once, resp.) continuously

- differentiable for each §&,¢; the derivatives are bounded on bounded

x-sets, uniformly in §£,€.

: (A6) There is a continuous function EO(') such that

Ege (x,60)8L(x,65) + Gy(x)

uniformly on bounded x-sets. There are continuous (and symmetric

A
w.1.0.g) a;;(-) such that for each f£(-,*) © 383’2,

7 BBl E0)E, (x,t)g, (x,E) + L BB RS ()8 (.6 )

> I
| -+ a..(x)f (x,t)
| | i,j 1 X3 %5

[ ST
.

uniformly on bounded x-sets. Thus, the second term on the left also




8+

converges uniformly to the above right hand side

minus % trace Gy (x)f, (x,t).

(A7) There is a continuous g(-) such that

ne 8

Ege (6,08, (x,60) » B(x)

=1

uniformly on bounded x-sets as € -+ 0, where

gl,xl(xig) e e . ’gl’xr(x’e)

g (x,8) =
e,x gr,x].(x’g),.o-’gr X (x’g)
L=p

(A8) There is a unique solution (for each initial condition)

tor

to the’maftingﬁielprbblbﬁ'iﬂv’Dr[O,“) “with opera
1§ 5—3;—- DR, + B (015
A=3 a..(x) ¥ AX) * g A
2 i,j=1 1J Xj9%;  jm3 2 i x; ’

th

where Hi(-) and Ei(-) are the i components of the vectors h(-)

and g(-), resp.

Remarks on (Ala,b). We note first that (5.1) holds if {fn} is

a zero mean stationary Gaussian process with correlation Efozi = Rz

and } |R2|1/2 < », For notational convenience, we show it in the unit
L -

variance and scalar case. We can write Ez = Ron + Ez' where 50

and €2 are zero mean and independent. The sentence below (5.1)

obyiously holds here. Also, equation (5.1) is implied by the

2 2 ~2
calculations EE& = ] = Rz + EEL.
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E(EZ|E,) - Erf = Rffg + EE: e

It can be seen from the method of proof that the theorem would
remain valid under weaker conditions than (Ala) (if the case (Alb)
does not hold). Then the special structure of the functions in (3.1)
would need to be taken into account. The proof is given for the broad
and standard cases (Ala,b), but its general outline would be followed

For example,
in other cases./ there are important examples in communication theory
(for example) where a system processes some wide-band and unbounded

noise input non-linearly. Somewhat analogous '"continuous parameters"

techniques have been developed [8] to deal with a number of these importanf

but special cases. Presumably, similar results are possible in the
discrete parameter case.

In the state-dependent noise case of Section 9, (Al) is not
used, and is replaced by a longer list of the (weaker) specific
conditions which are actually used in the proof (of either
Theorems 3 or 4). See also the comments on the Markov case in
Section 9, where the conditions on the continuity and differentiability
of the functions are weakened. We note also that the proofs can
readily be adapted to the traditional stochastic approximation case
where € 1is replaced by a sequence {En}, with € > 0 wused at

n

iterate n, and |} €, ==, § + 0,

6. The Main Convergence Theorem

The same {fe’N(-)} will be used to satisfy the requirements of both

A
Theorems 1 and 2. We usq_oa_-.]g(l)’s f“ld.’ given  f£(-,*) ¢ g,
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u:stnxn:fe’n(-) via a discrete parameter analog of the method used
in [5], [6], [9]. The (x%} and (X5*M} are defined by (3.1) and (3.2) resp.,
here.

Theorem 3. Let X% + X weakly. Under (Ala or b) and
T ESEE———— — 0 0 —_— —

(A2)- (A8), {X°(-)} is tight in D'[0,=) and, as ¢ + 0, converges

weakly to the diffusion determined by the solution to the martingale

problem with the operator A of (A8), and initial condition

Xo = X(0).

|
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Proof. Part 1. Fix f(-,:) € JU’and fix N throughout the proof.

First {fE,N(_)} satisfying (4.1), (4.2) will be found. In order to

simplify the notation in the proof the superscript N on ASN  ang

on xﬁJ“, XE’N(°) and XN(o) and the subscript N on h, N» £tc.,
b ’

will henceforth be dropped (in the proof only), but we always work here
N

with x:' 'he,N’ etc., only, and not with the original Xn and h_, etc.

The proof under (Ala) will be given first. The simple modifications
required under (Alb) will then be stated.
Thus we can suppose that-there is a constant KN such that
€ € € - PPN
IX, | < Ky X 41 - X | < KyY€ and that |h .|, |h_|, etc., (definitions
(Ala or Alb) are bounded above by KN.
The O(-), o(¢) and oi(-) terms (with or without subscripts)
are uniform in all variables (except N, which is fixed throughout)

other than their arguments, unless otherwise stated. Evaluate

~ e B
eA®£(X",ne) = E-£(X, ,neve) - £(Xne)
: €
= E [£(XS, ,n€+€) - £(X-,;,n€)]

+ BL[£(XS,,,n€) - £(X,n€)]
(6.1)

€
= €E £, (X°,,,n€) + o(€) + £!(X:,ne)E (R (X7)
+ /8 g (XE,E5) + eh(X,Ep))

+ 7 EBLOG S EL (X ame)g (XF,65) + o) ().
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Part 2. Define f° = f(x;,ne) + f:(ne) + f;(nE), where the

fi(-) will be selected so that (4.1) and (4.2) hold. We now define ff(«) in

S dependent parts of (6.1). Define G,(x,E) |

gc(x,6)g)(x,6) and T.(x) = EG (x,6). Define £ (t) to be constant

such a way that we 'average out" the ¢

on each [n€e,ne+e) and satisfy ff(ne) = ff(xs,ne), where f;(-,o)

is defined by

-]
€ 4 €
£1(x,ne) = € 2§nsgf;(x,5n)he(x,££)
+ 2 2 [E, trace G (x,§;)"f (x,ne) -
=N
- trace Ce(x)fxx(x,ne)]
e IR € €
+ /€ lEnEnf;(x,en)ge(x,Ez) =T, + Ty + T4

By the ¢-mixing and the facts that the expectations of all the
summands are zero, the first two terms are O0(€), and the third
0(/€), uniformly in x. Thus, p-lim £(-) = 0.

A€

€ g :
Now calculate A fl(-) at t = ne: E
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~€E_.€E € Y € _€
eA°£](n€) = -€E £ (X", en)h (X7, )

- ; E:trace Ge(x:,E;)fxx(xz,ne) +

+ ; trace Ce(xz)fxx(x;,ne)

€
n

.. € €
/E Enfx (X ,en)ge(xn,cn)

6.2) + e ¥ ES(£r

€ >t Sl €
g=n+1 M x Znap 0+ OIR(X, L ,8p) -

- £1 xS, em)h(XE,E Q)]

|

+ [a term similar to the last but coming from

T

IS T s

e Y

; instead of from Tf] *

€ € €
e z_nglﬁn[f,'((xn,,l.€n+n)se(xn+1.52)

- £1 (X, en)g (X 600,

+

The first, second and fourth terms in (6.2) cancel terms in

(6.1) (which is the reason for constructing ff(-) as we did).

P —

| The Sth and 6th terms are o(€), as will now be shown. It is
1 . easy to see that the difference between these terms and their
values with e€en + € replaced by e€n in the fx(°,°) is o(€).

th

The rest will be shown for the 5 term only. Define Ho(x,€n,§) =

J f;(x,cn)ic(x.c). Then we must show that

| (6.3) € I Ej[Hg(Xy, . nEy - KX, en,8p)) = o(e).

[




ol i
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=T
By (the zeroeth order) Taylor's formula with remainder, (6.3) equals
t 1 € € €
ez-£+1 Ioﬁnﬂé x(xn*s(xn+1 X ) t':“’ell,)[xnﬂ'xn]ds

3/2)

which equals O(e by the ¢-mixing condition and the fact that

IXn+1 # le SKN/E- The 6%h term is treated similarly. Thus,
p-lim (5th + 61:-h terms)/€ = 0.
M

th

The 7th and last term remains. Again, the 7 term differs by

o(e) from the term obtained by replacing €n + € by €n in the
fx(-,-), and we replace €n + € by ¢€n there. Write K. (x,€n,§) =

f;(x,sn)ge(x,g). Then by applying (the first order) Taylor's formula

sth

with remainder, we can write the term as

(6.4) o(e) +/£ 2 B® (ke (x v€n,&g €y (x& "

+
L=n+1 n n"l n)

1
I (1-5) (XpyqX0) 'Ke o (Xpes (XD ) -X) en,6 ) (XS, -XE)ds

The contribution of the "sum of the integrals'" component of (6.4) is

0(:3/2) by the ¢-mixing and the fact that E Ke'xx(x.enoﬁf) = 0.

Next, by collecting the terms of the first component of the sum in

(6.4) according to their power of €, we can write

(6.5) (6.4 = o() + € T EIELOC, mg ¢ .69) 8, OCED).

f=n+1
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Part 3. Next, fz(-) will be introduced in a way which will
"average out" the second term on the right side of (6.5). Note that,

as €+ 0 (and ne +t in f(:,+))

L BLE (x, en)ge (x,6 ) 15g e (x,6 g)

converges uniformly to the quantity mentioned in the last sentence
of (A6) plus f;(x,t)i(x) (g(-) 1is defined in (A7)). Recall that
we have suppressed the affixes N, and that the ge(x,8), etc. used
in the proof is actually (in terms of the original ge(x,8), etc.,
8c(x,8)qy(x), etc.

Next, fg(') is to be chosen. If is to be constant on each
interval [ne,n€+€) and satisfy f;(nE) = ff(x;,ne), where fg(x,ne)

is defined by

£5 (ne) = fg(x:,ne) where f;(x,ne) is defined by

€ Y " E . Sy} €
fz(xﬂ‘e) oy P LG j_éu[En(fx(x'ne)ge(x’ej))xge(x’ez)

- B(£(x,n€)ge(x,65)) 18 (x,6)].

By the ¢-mixing and the fact that the centered summand has zero

expectation, If;(x,ne)| = 0(e) wuniformly in x. Thus, p-éi; fg(-) = 0,

Next, evaluating R‘f;(ne) and using the stationarity of the {E;}.
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o ~E € -  Ue,: % € ,€ €€
: €A £, (n€) € £_£+13n(fx(xn’ne)ge(xn’az))ige(xn'gn)

+ € I B(£L(x,n€)g (x,80)) 18, (x,E¢)

2=1 X=X
(6.6) ‘
ce B Lt
: . Qe(x:,ne,ﬁ;.ii)].
| where

Qex,ne,85,60) = (£1(x,ne)ge(x,65)) 18, (x,E) -

- E(£L(x,ne)g¢ (x,65)) 18 (x,6)) .

R o AT A R R ) il § l

By (Ala) and an argument using Taylor's formula similar to
that used in connection with (6.3), we get that the last term of 1;

(6.6) is o(€). Also, the first term of (6.6) cancels the second :
term on the right of (6.4). L

Part 4. Recall the definition of f‘(en) given in Part 2.

Adding the results of Parts 1-3, and deleting the terms of Refe(') }
i; which cancel, yields (modulo the qN(-) factors of He, etc.)
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£°(en) = £(X7,ne) *+ 0(/F)
R%€S(en) ~ £.X ,ne) ¢+ £30X5,ne)E (X°)

(6.7) * 3 EELG EDEL (x me)gtx 5|

€
=
X xn

+ I B(£L(x ,me)g (X ,&7))ig (X ,E¢) + o(e)/e.

= .e
=1 b ¢ Xn

. ™
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Then, by the convergences (A3), (A6), and (A7) all of (4.4), (4.5)
and (4.6) hold (the M;’N(f) are bounded here), yielding tightness; also

(4.1), (4.2) hold, yielding the asserted weak convergence.

Part 5. Owing to the special form of the functions under (Alb),

essentially the same proof can be used. The only problem is that the

0(*) ~and o(:) terms are not uniform in en-l’ Let us examine some

typical terms. Let En denote conditioning on Ei’ i < n. All the
O0(°) below are uniform in all variables other than their argument.

The essential part of the last term in the definition of f;(En) is

(the fx term is omitted)

T o€ €1 T (o€r€
| V€ zEnEnge(x,Ez)| IVE g (x) 2§nLEn€£| £

Flgetorl § R il
=N

Next, examine the expression below (6.3). For some G > 0, we can show

that it is bounded above by

o -G R = i1
o )z-£+1Enl En+1€z|(1’|€n| )

- (4
= o(e¥H)EfIE | (+IE I Y IIRyI.

Also, by a careful use of iterated conditional expectations and (5.1),

we can show that z"

§
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|£5(ne) | < 0(e) (1+1E,_;1%).

In fact, it can readily be shown that If;(nE)l and all the o(€)/e€

terms in Refe(ne) which appeared in Parts 1 to 4 are of the form

eY(1+| Ei_lls) for some y > 0 and § > 0. This, together with the
fact that all moments exist implies (4.1)-(4.2).

Next, note that for each m > 1,

P{ sup €Y|E;|6 > u} < % P{EYIEAIG > u}

n<T/e€
TE I E l Gmer
< & .
- eum
By letting ym > 1, (4.4) to (4.6) hold, Q.E.D.

7. Application to a Problem of Guess and Gillespie [1]

In [1], the scalar problem (7.1) is treated

(7.1) Xeep = X5 * £(S5) + (exp g(S5) - 1)XE, X = X,

under two different sets of conditions. The first being that

for some constants M, o <0 and {rn} such that } Ty € =
n
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2

-X
5
3
H
.
1

€ € E _E 2 € €
ES =uE€, var S = 0°¢, Cov(S ,S;) = eo“r ~ and {(sn-Esn)//E}

satisfying the condition on ‘{E;} in (Ala). Under their second
set of conditions the {S:} are Gaussian, hence unbounded. Our

method works in either case. We stick to the first case. Note

that IS:I < K/€ for some real K. Let f(-),g(-) have continuous
third derivatives with £(0) = g(0) = 0, and put (7.1) into the
form (3.1) by expanding exp g(°) and £(-). First write

€ €
(7.2) X .4 = X; *+ E£(S;) *+ Blexp g(S;,;) - X+

/E(f(sﬁ) - E£(5.))
/e
€ €
/E[exp(g(sn,l) - 1) - E(exp g(S;,q) - 1)] it
JE n

+

+

Expanding g(-) and f(.) yields (the o(:) are uniform in all

variables but their argument).

(7.3) Xp,q = X+ €[£,(0)u.+ 3 £..(0)0F + ug_(0)XS +

7 (85(0) + g2(0))0%x5] +

€ € € € €
(S_-ES_) (S_-ES_)X
+ /€ [fs(o)"ﬂjé?ﬂ' + 35(0)-2:%?2-_2

] +

s€y2 . €,2
((sp) : B(S)T) | |

5 [£,,(0)

(sH? - EsHHxE 3
+ (85(0) + g2(0))—B——p 0" M) 4 o(q). B

x; + eﬁ(x:) + /e ge(xi,e:) + eﬁe(x:,E:) + o(e),




1
1

R ]
5

v
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where E:, H(-),ge(-) and He(') are defined in the obvious manner.
Equation (7.3) is of the form (3.1) and the conditions of Theorem 3

hold. An immediate application of Theorem 3 yields that that the

{Xe(°)} are tight and that the weak limit is the unique diffusion

with the operator (the same result as [1])

: T 2 3?2
Nl g5 + 3 (b3b,x) .
X

a) = MEG(0) + 3 oP[(P-1)E (0)g (0) + £_ (0)]

1 272
a; = ug (0) + 5 Uzln g, L0y * g55(0)]
b1 = Onfs(O), bZ = Ongs(O)
2 o0
n =1+27% r..

i=1 !

Since our method does not require an explicit construction of the
solution process (as essentially done in the proof in [1]), it is
equally applicable to vector-valued versions of (7.1), and seems to give
a bit more insight into the approximation process and the effects of

variations in the data.

8. Rate of Convergence for a Stochastic Approximation

Stochastic approximations of the form

€
n+l

(8.1) Xt . = x: + eh(x:) + eg(x:,ej)
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have numerous applications in sequential monte-carlo optimization in
control theory. In [10], [11], convergence and rate of convergence

is treated via a rather direcg method. We use the notation of this
paper rather than that of [10], [11]. Let h(-) and g(-,*) satisfy
(AS) and assume Eg(x,&ﬁ) = 0. Let x(t) =6 denote a globally
asymptotically stable solution to x = h(x) (which we assume exists). |
Thus, h(6) = 0. The properties of {Xg} for large n and small €
are of interest. To invesitgate them, define U; = (xﬁ-e)//E. In
[11], it is shown under appropriate conditions that there is an N¢g =+ «
as €+ 0 (unless g(x,§) = g(x)£, in which case the process can be
centered so that N, = 0) such that {U:, n>N_, €>0} is tight.
Let us assume this tightness here and study the asymptotics of Ue(-)
where Ue(t) = U§ +n ON [ne,ne+e). The "tail" of UE'(-) for small € contains:
the rate of conve:gence information for {X:L for small €. By the
assumed tightness

lim Tim P{|X%-6| > 6} = 0, each & > 0.
e+0 noo &

Now, by (8.1) we can write

(8.2) Up,p = Uy + e[h (8) + g (8,67)1U;

+ /286,60 + ¥/ aex)), UDHUE,

where Bo(-,-) is a matrix valued bilinear form, G(-) is a function
which is bounded on bounded x-sets and x; € [x:,x;*l]. Next fix a |

weakly convergent subsequence of {U; } with limit Up- Then under
€




e

L
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|
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suitable conditions on {g(e,E:)}, Theorem 3 and the truncation method
can be applied to get Theorem 2 of [10]; in particular, U(*), the weak
limit of {Ue(-)} solves

(8.3) du = h_(9)Udt + rRY248, u(o) - U,

(-
where R = lim Eg(e,Eg)g'(e,Ef) and B(-) is a standard Wiener
e+>0 -

.process. This is one of the results of [11] and.was proved there by

solving (8.2) (modula the Bo—terms) and essentially constructing. the
limit via weak convergence theory, a more arduous task than merely using

Theorem 3 (although the proof in [11] has its own intrinsic interest,

and the paper contains other interesting results).

If N, is chosen such that EN. + ©» as € + 0, then the weak

limit U(-) of the original {Ue(-)} is the stationary solution to

(8.3). The technique can also be applied to the rate of convergence
problem for stochastic approximations where the € in (8.1) is replaced
by . and s 0 as n + », with } T although we will not
pursue this. In this case, the interpolation intervals would be €

rather than the constant €.

9. State Dependent Noise {E:}

Under broad conditions, the treatment for state dependent
noise is very similar to that given in Theorem 3, and only two cases
will be discussed. For each € > 0, {W:} denotes a stationary

bounded sequence. If the {W:} are mutually independent, then the

—————————-—
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{E:_l,x;} below are Markovian and, as will be seen, the smoothness
of Q¢ in (A9) below can then be weakened. The scheme introduced
here covers some interesting cases, but it should be seen as being
typical of the possibilities, as indicated by the example in

Section 10, which uses a slightly different setup. We will need:

(A9) There is a function Qe(+y+s+) such that 5: =

Qe(x:,éf_l,w:) where Q has continuous (uniformly in ¥-in

bounded (x,§) sets) partial (x,§) derivatives up to second order.

For each sphere SN there is a sphere SN £ such that E: remains
»

in SN,E as long as X: remains in Sy.

It is now convenient to introduce some auxiliary processes

which will be used in the construction of the ff(-). For each n,

€

z’xx(x). 2 >n} as

define the processes P (x) = {€:(x).€:’x(x),€

follows:
Eg(x) = Qelx,Eq ;(x),¥,)
(9.1) &g (0 = Q L (x,E5 1 (X),0p) * Q g(x,Ep 1 (X ¥p)p ; (),

E: xx(x) = collection of second partial derivatives of the
]

components of E:(x).

The initial conditions on P (x) will be given below, when ff and

f; are defined.
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(AIO) For each x, there is a unique stationary process
p(Jt) = {f,'(x) E%x(x),ﬁl x(X)s ® >8> ww)

satisfying (9.1).
The process is bounde uniformly in bounded x-sets). and the

second (resp., third) mepber is the x-derivative of the first (resp.,
second) member.

Some sort of mixing condition on P (x) is needed, as is some

condition on the rate of convergence of the distributlons of the

"tails" of P (x) to those of the stationary process F(x). A

general type of mixing condition (as in (Al)) can be used, but we
prefer here to introduce the conditions in the weakest and most

explicit form (Al1l), (A12) that we can use. This is because, owing

to the double requirement just mentioned, it seems simpler to do it
this way. There are many sets of sufficient conditions which iﬁply (&11)?(A12),
and there seems little point in restricting the applicability of the result. Note
that (A12) is the weakest condition which is usable in Theorem 3 in place of (Al) in
the non-state-dependent noise case. Below, the subscript x denotes a total

derivative; i.e., for a smooth function q(-),

A0x,E4 (X)), = 4 (x,65(x)) + ag (x,E4(x))E; L (x).

Conditions (All) and (A12) can be combined, but it is perhaps more

natural (for purposes of verification) to keep them as they are.

E 1 o T —— e -
V l | X B
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(Al11) concerns the rate of convergence of the distributions of
Pn(x) to those of P(x) for "non-stationary" initial conditions for

Pn(x). while (A12) is more of a mixing condition, concerning the rate

of convergence [E:Q(Ez*n(x)’at+n,x(x)’€z+n,xx(x)) -
Bq(€z¢n(x)’Ez+n,x(x)’52+n,xx(x)] + 0 for smooth q(:), as ¢ + =,

A

(Al11) For each f(-,:) € 030*“, the sums (9.2), (9.3) converge

(absolutely) uniformly in x,t,n and in the initial conditions

€ € *
En(x),in.x(x) in bounded sets. Define

o .y e ——— —

£

I

i
|
¥

E
]
%
w
|
J
I
i

i
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€ : € €
Hy(x) = Bgo(x,6, (X)), (X,t)g (x,6 5 (x))
- Egp(x,§, (x))£, (x,t)g, (x,5 (x))
IG e v EE £ - €
5,000 = B8l O6,E (), (x,£)) 18 (x,6 4 (X))
- E(g(x,E5(x)) £, (x,1)) g (x,E5(x)).
(9.2) IHS, 3 (Hy (x))
g=n * £=n
9.3 1} . Lo
S J-§+1 e j-§.+1( 3,00

€ s £ . el o
Let Bn denote conditioning on Wi, i < n, and on the initial

=~

3.8 € € € .
condition of Pn(x), namely, (En(x),En’x(x),ﬁn,xx(x)). Owing to the

stationarity of {W:} we could set n = 0 in (All).
(A12) Define (j > £ > n)

J:(x)

€., ~ ¢
Enfx (X,t)he (x,iz(x))

Ky (x) = Epgl (x,6; (x)) £, (x,)ge (x,6 £ (x))

€
Eg! (x,6, ()£, (x,0)g (x,6 (x))

€ g€
Lz(x) E £ (x,t)g (x, € (x))

My, () = Ep(g) (0,65 ()£, (x,0)) 38, (x,6 S C)
Bgg (x,65 (X)), (x,£)) 18 (x,6, (x)).




3%~

The sums (9.4,5,6) below converge (absolutely) uniformly in wo,t,x,n

and initial conditions for Pn(x)

Ao
f(') € 30’ .

in bounded sets, for each

oo o 2
(9.4) i J:(x), zi (J:(xnk, and also for K,L replacing J.
=n

L=n
b S
(9.5) zzn(Lz(x))xx
9.6 1 EM? . °f 1 ME |
.- zEn j=2+1 3,009 2=n j=§+1( 3,00

~

Remark. (Al1)-(Al12) hold if {W:} is mutually independent,

h, and g are multiplicative in § and there are |o| <1 and

twice continuously differentiable (in x)b(:-,°*) such that
€ € € € €, 2
o1 = %6y * D(Xgyyi¥g4q)s BOGXY,) = 0.

A Note on the Markov Case. For the case where {w:} are

€
mutually independent for each € > 0, {x:,an_l) is a Markov process

if Q. is merely a Borel function. Then B: in (A12) and in (9.7),

(9.8) below can be replaced by conditioning an x:,5:_1 only.

€

Instead of differentiating the functions in the sums in ff and fz

with respect to x, as done in the proof of Theorem 3, it is only
necessary that the Eéf;(x,En)ﬁe(x,Ez(x)),

Egl(x, §g(x)) £, (x,t)ge(x,8,(x)), etc., be differentiated. Often the
latter functions are smooth functions of x, uniformly for t: in

bounded sets - even for Q. not satisfying the smoothness

required by (A9). In that case, the proof of Theorem 3 can be carried {;

out-but with derivatives of the conditional expectations
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and expectations of the functions being taken in lieu of the
derivatives of the functions themselves. Of course, the same can be
said for the case of Theorem 3, if {ég,x:} is Markov there.

To be more specific, In (9.2)-(9.6) replace (with the exception
of the I;l(x) and M?t(x) terms) the B(-)x and Ee(-) by
(E(’))z and (En(-))x, resp. Replace M;’z(x) and I (x) by,

resp.,
My 00 = E(E g (x,65 (X)), (x,£)) 18, (x,65(x))]
“E[(Egg L (x,£5(x)) £, (x,t)) g (x,65(x))],

I, 00 = BL(EggL(x,67(x)) £ (x, )38 o (x, 6 £0))]

- BI(EgL(x,T{(x)) £, (x,t)) 18 (x,E;(x))],

where Bf denotes conditioning on the Markov state at time L,

whatever the process. Finally, replace the summand in (A7) by

E(Eqg (X, E(x))) 8 (x,E5(x)).

Then, assuming that the above derivatives and conditional expectations

and expectations are well defined, Theorem 4 continues to hold.

Iheorem 4. Assume- (_AZ) (A12), where in (A4), (A6), (A7),
{th(x) replaces (& } and the deriVatlive in LA7) is a total
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derivative’. Then the conclusion of Theorem 3 continues to hold.

Proof. The proof is the same as that of Theorem 3. The only

change is that we use the following for the fg. First,

ff(ne) = f:(x:,ne) where, analogously to the case in Theorem 3,

£ (x,ne) = /% jgnsif;(x,ne)ge(x.£§(x)) +

xan:fé(x,en)ﬁe(x,E:(x))

> SPGT S8 e €
zzn[Enge(x,Ez(X))fxx(x,en)ge(X.Ez(X))

Egy(x,By (x)) £, (x,en)g (x,T5(x))],

€

and the initial condition for {£;(X)), £ > n},is &7(X) = &F.

Next, we use f;(ne) = f:(x:,ne), where

€ S € g €
fone) = ¢ 1L B n)ge (6,6 00)) g (0,65 ()

- B (x,n€)g, (x,55(x))) g (%, (x))]

- and with initial conditions

*I.e., g"x(x.?}(x)) in (A7) is replacgd by ge’x(x,ff(x))
* 8¢, (x,E, ()T | (x).
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€ € & € € €
En(xn) En’ En#l.x(xn) " Qx(x:n5:.W:+1).

ISP s

The forms of {Ez(x),E:(x)} and f:.f; are chosen so that, by
following the method of Theorem 3, we get the correct cancellations
and the centering about the correct - and intuitively reasonable -

"mean-values" which make up the operator of the limit process.

10. An Example

A simple but interesting example will be given. It does not

PR SRR

quite fit the format of Theorem 4, but can be handled by a very

similar development, and it suggests some interesting possibilities,

R B e

as well as indicating the potential power of the general method of
the paper. We consider a very simple form of the Kiefer-Wolfowitz
stochastic approximation for minimizing a function q(x). Here

q(x) = % x'Kx, K positive definite and symmetric, and it is assumed

that the derivative plus noise is observed, and the coefficient

sequence is constant; i.e., the iterate sequence is

€

(10.1) Yoei

€ €
N Yn 5 GIKYnN'n].

h

where Y: is the nt estimate of the minimum value 0 of q(x)

and the (vn) are mutually independent. It is occasionally suggested

that, if observations at successive parameter points were averaged

in some way, then convergence would be improved.

.



This question will now be investigated. A more general form for
q(*) could be used, but we stick to the simple case in order to

illustrate the main point as efficiently as possible.

Instead of (10.1), we deal with (10.2), where the successive

observations are geometrically weighted for use in the iteration.
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€ € €
Xpe1 = Xp - €, 0<cac<1, B>0,
(10.2)
€y = 96~ | + BIKXSwy ], {v,} bounded, identically

distributed.

If o = 0, then (10.2) reduces to (10.1). For o > 0, there is some
averaging. Define xe(-) as in Section 1. The conditions of
Theorem 4 all hold and by Theorenm 4, {Xe(')} is tight and converges
(in Dr[o,w), for some integer r) weakly to the sqlution of
X = -(BK/(1-%))x.

Next, let us center {X:} about its "mean value" and examine

the rate of convergence. Define i:,é:,i:,gg, by

S€ o€ AE  ag
Xpe1 = X5 - S5, X5 = X,
€ € AE pE €

€n = agn-l + BKXn, Eo - 50’
~c ~€ ~g ~€
Xn+1 = Xn - Eﬁn, Xo =0,

~e ~€ ~€ ~€

En . ugn-l i B(Kxn+wn)’ 50 S

€ _ ac =€ £ .8
then X = * X,. Let U = Xn//E. Then

€ € o ol
Uner = Uy - 7B &4, Up =0,
(10.3) ~ -
€ = 9kL  +B(KVE USw ).

Now define (E:(u)} by




-
[T,

3 ~XF.

(10.4) E:(u) = aE;il(n)*'B(xJE us¥,), £ >n, each n,

where the initial conditions are assigned at n as they were for
{Ei(x), £ > n} in Theorem 4. We analyze (10.3), which differs from ; b
the situation in Theorem 4 owing to the Y€ in the gi equation and

the fact that+ EE:(X) is not zero unless u = 0 (the bar ~ denotes

the associated stationary process). Nevertheless, aﬂ almost identical
development to that of Therems 3 or 4 can be carried out by following

the technique of Theorem 3 and introducing ff,fg with the correct
centering, very similar to what was done in the discussion concerning
Theorem 4. We simply state the result in the scalar case. {ue(-)} is

tight in D[0,») and converges weakly to the diffusion U(-): : 3}

du = 7Py Udt + CaW, U(0) = o,

-

(10.5) 2 4
2 _0o°B 20
oy e b

where o = BZ. 1f (U, €> 0, n> 0} is tight, then so is

{Ue(te+°) € > 0} for any sequence t. * ®, and the weak limit of the
last sequence is the stationary solution to (10.5).
The stationary variance of (10.5) is CZ(I-G)IZBK or

#8/2K(1-0). i
If 8= (1-a) then the mean rate of convergence as well as the asymptotic

?5 normalized variance do not depend on «. For smaller B, the mean
| rate is lowar, the rate of decrease of the covariance of U(:) slower, but the

0Here, ge(u,8) = §.
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asymptotic normalized variance is smaller. So there is no clear

™.

advantage to averaging, although other schemes may yield different

results. The format developed in this paper seems to be quite

[r———
" '

suitable for the analysis of such problems.
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